Kernel hautapen dinamikoa Optimizazio Bayesiarrean

dc.contributor.authorRoman Txopitea, Ibaieus
dc.contributor.authorSantana Hermida, Robertoeus
dc.contributor.authorMendiburu Alberro, Alexeus
dc.contributor.authorLozano Alonso, Jose Antonioeus
dc.date.accessioned2024-11-27T11:49:11Z
dc.date.available2024-11-27T11:49:11Z
dc.description.abstractOptimizazio Bayesiarra Prozesu Gaussiarren bitartez egiten denean, kernel batzuk beste batzuk bainohobeto egokitzen dira helburu-funtziora. Lan honetan, kernel hauek dinamikoki aldatzeko aukera aztertudugu, hobekuntza-probabilitatean oinarriturik.Kernelen hautaketa aurrera eramateko bost irizpideaurkeztu eta helburu-funtzio ezagunen bidez ebaluatu ditugu.Lortutako emaitzen arabera, irizpidehauek algoritmoaren errendimendua hobetzen dute kernel egokiena aurretiaz ezezaguna denean.eus
dc.description.abstractIn Bayesian Optimization, when using a Gaussian Process prior, some kernels adapt better than othersto the objective function.This research evaluates the possibility of dynamically changing the kernelfunction based on the probability of improvement. Five kernel selection strategies are proposed and testedin well known synthetic functions. According to our preliminary experiments, these methods can improvethe efficiency of the search when the best kernel for the problem is unknown.en
dc.identifier.doihttps://dx.doi.org/10.26876/ikergazte.i.95
dc.identifier.otherproduction.37422
dc.identifier.urihttps://gordailua.ueu.eus/handle/123456789/2214
dc.relation.ispartofI. Ikergazte: Nazioarteko ikerketa euskaraz. Kongresuko artikulu-bilduma
dc.subjectOptimizazio Bayesiarraeus
dc.subjectProzesu Gaussiarrakeus
dc.subjectOptimizazio Orokorraeus
dc.subjectBayesian Optimizationen
dc.subjectGaussian Processen
dc.subjectGlobal Optimizationen
dc.subject.otherInformatikaeus
dc.titleKernel hautapen dinamikoa Optimizazio Bayesiarreaneus
dc.typeintroductionen

Files

Collections