Kernel hautapen dinamikoa Optimizazio Bayesiarrean
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Optimizazio Bayesiarra Prozesu Gaussiarren bitartez egiten denean, kernel batzuk beste batzuk bainohobeto egokitzen dira helburu-funtziora. Lan honetan, kernel hauek dinamikoki aldatzeko aukera aztertudugu, hobekuntza-probabilitatean oinarriturik.Kernelen hautaketa aurrera eramateko bost irizpideaurkeztu eta helburu-funtzio ezagunen bidez ebaluatu ditugu.Lortutako emaitzen arabera, irizpidehauek algoritmoaren errendimendua hobetzen dute kernel egokiena aurretiaz ezezaguna denean.
In Bayesian Optimization, when using a Gaussian Process prior, some kernels adapt better than othersto the objective function.This research evaluates the possibility of dynamically changing the kernelfunction based on the probability of improvement. Five kernel selection strategies are proposed and testedin well known synthetic functions. According to our preliminary experiments, these methods can improvethe efficiency of the search when the best kernel for the problem is unknown.
In Bayesian Optimization, when using a Gaussian Process prior, some kernels adapt better than othersto the objective function.This research evaluates the possibility of dynamically changing the kernelfunction based on the probability of improvement. Five kernel selection strategies are proposed and testedin well known synthetic functions. According to our preliminary experiments, these methods can improvethe efficiency of the search when the best kernel for the problem is unknown.
Description
Keywords
Optimizazio Bayesiarra, Prozesu Gaussiarrak, Optimizazio Orokorra, Bayesian Optimization, Gaussian Process, Global Optimization