3-PRS robot baten parametro dinamikoen identifikazioa Egiantz Handieneko estimazio-metodoaren bidez
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Artikulu hau Sistema Dinamikoen Identifikazioaren arloan kokatzen da, hain zuzen ere ikerketa-ildo honetan: 3-PRS robot baten parametro dinamikoen estimazioa, Karratu Txikienen metodoa (Least Squares method, LS) eta Egiantz Handieneko metodoa (Maximum Likelihood method, ML) erabiliz. Artikulu honetan, lehenik, eredu zinematikoa eta eredu dinamikoa garatu dira; bigarrenik, ekuazio dinamikoak kalkulatu dira Potentzia Birtualen Printzipioaren bidez, eta eredu murriztua egin da; eta, azkenik, parametro dinamikoak erdietsi dira LS eta ML metodoen bidez. Behin parametro dinamikoak estimatu ondoren, horien ondoriozko neurketak sistema mekanikoari zenbateraino doitzen zaizkion begiratu da, eta ML estimazio-metodoa erabili behar ote den egiaztatu da, neurtu den zarataren magnitudea kontuan hartuta.
This paper is focused on the Identification of Dynamic Systems, especially on the estimation of the dynamic parameters of a 3-PRS Robot using the methods of the Least Squares (LS) and Maximum Likelihood (ML). In this paper cinematic and dynamic models have been developed, then by means of the Principle of the Virtual Powers the dynamic equations have been obtained with the reduced model and finally through the LS and ML methods the dynamic parameters were achieved. Once the dynamic parameters have been estimated, it has been checked whether the estimate fits the measurements and the use of the ML estimation method has been ensured depending on the magnitude of the noise measurement.
This paper is focused on the Identification of Dynamic Systems, especially on the estimation of the dynamic parameters of a 3-PRS Robot using the methods of the Least Squares (LS) and Maximum Likelihood (ML). In this paper cinematic and dynamic models have been developed, then by means of the Principle of the Virtual Powers the dynamic equations have been obtained with the reduced model and finally through the LS and ML methods the dynamic parameters were achieved. Once the dynamic parameters have been estimated, it has been checked whether the estimate fits the measurements and the use of the ML estimation method has been ensured depending on the magnitude of the noise measurement.
Description
Keywords
Parametro dinamikoen identifikazioa, Karratu Txikienen estimazio-metodoa, Egiantz Handieneko estimazio-metodoa, 3-PRS robota, Dynamic parameters identification, Least Squares estimation, Maximum Likelihood estimation, 3-PRS robot