MLb-LDLr: LDLaren hartzaile aldaeren eragina aurresateko ikasketa automatikoko eredua

dc.contributor.authorLarrea Sebal, Asiereus
dc.contributor.authorGalicia Garcia, Unaieus
dc.contributor.authorJebari Benslaiman, Shifaeus
dc.contributor.authorAlonso Estrada, Rocioeus
dc.contributor.authorBenito Vicente, Asiereus
dc.contributor.authorB. Uribe, Kepaeus
dc.contributor.authorArrasate Gil, Soniaeus
dc.contributor.authorGonzález Díaz, Humbertoeus
dc.contributor.authorMartin Plagaro, Cesareus
dc.date.accessioned2024-11-27T11:51:12Z
dc.date.available2024-11-27T11:51:12Z
dc.description.abstractHiperkolesterolemia Familiarrak plasmako dentsitate baxuko lipoproteina-kolesterol maila altua du ezaugarri nagusi. Hiperkolesterolemia Familiarra agertzearen arrazoirik ohikoena LDL hartzailearen aldaerak dira, zeintzuek dentsitate baxuko lipoproteina-kolesterola hartzea murrizten eta plasman pilatzea eragiten duten. Gaixotasunaren diagnosi goiztiarra gakoa da gaixotasun kardiobaskularraren agerpena saihesteko. Alderen karakterizazioan gehien erabilitako tekniken prozesuak luzeak eta garestiak dira. In silico softwareak, aldiz, non algoritmo konputazionalak erabiltzen diren aldaera baten eragina aurresateko, konponbide berritzaile bat dira. Lan honetan LDL hartzailearen missense aldaeren patogenizitatea aurresan dezakeen ikasketa automatikoko eredu bat garatu dugu.eus
dc.description.abstractFamilial hypercholesterolemia is characterized by high concentration of low-density lipoprotein cholesterol in plasma. The most common cause of Familial hypercholesterolemia are mutations in LDL receptor (LDLr) gene, which reduce LDL-C uptake and promote the accumulation of LDL-C in plasma. An early diagnosis of the disease is key to avoiding cardiovascular disease development. The most used characterization techniques are long and expensive processes. On the other hand, in silico software, where computational algorithms are used to predict the effect of a variant, is an innovative solution. In this work, we have developed a Machine Learning model that can predict the pathogenicity of LDLr missense variants.en
dc.identifier.doihttps://dx.doi.org/10.26876/ikergazte.iv.04.01
dc.identifier.otherproduction.44773
dc.identifier.urihttps://gordailua.ueu.eus/handle/123456789/2582
dc.relation.ispartofIV. Ikergazte. Nazioarteko ikerketa euskaraz. Kongresuko artikulu bilduma. Osasun Zientziak
dc.subjectHiperkolesterolemia Familiarraeus
dc.subjectLDLreus
dc.subjectIkasketa Automatikoaeus
dc.subjectFamilial Hypercholesterolemiaen
dc.subjectLDLren
dc.subjectMachine Learningen
dc.subject.otherInformatikaeus
dc.subject.otherMedikuntzaeus
dc.titleMLb-LDLr: LDLaren hartzaile aldaeren eragina aurresateko ikasketa automatikoko ereduaeus
dc.typeintroductionen

Files

Collections