Espazio-denborako EFMaren eta lerroen metodo esplizituen arteko baliokidetasuna: egonkortasun-baldintza
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Denboraren eremuko problemei helburuetara orientatutako egokitzapena aplikatzeko, espazio-denborari dagokionformulazio bariazionala izatea ezinbestekoa da. Problema askatzeko espazio-denborako Elementu Finituen Meto-doa (EFM) erabil badaiteke ere, lerroen metodoa erabiliz ere egin daiteke egokitzapena. Honek espazio-denborakoEFMaren eta Ekuazio Diferentzial Arruntak (EDAk) askatzeko erabiltzen diren metodoen arteko baliokidetasunaaurkitzea eskatzen du. Erlazio hau ezaguna da metodo inplizituentzat, eta oraintsu metodo esplizituentzat ereaurkitu dugu.Metodo esplizituek inplizituek baino konputazio-kostu txikiagoa badute ere, egonkortasunaridagokion baldintza bete behar dute emaitza onak lortu nahi badira.Lan honetan egonkortasun baldintzarenkudeaketaz jardungo dugu.
For time-domain goal-oriented adaptivity a full space-time variational formulation is needed.Even thoughthe problem can be solved employing space-time Finite Element Method (FEM), adaptivity can be performedusing the Method of Lines (MoL). This requires to find the equivalence between the space-time FEM and thenumerical methods for Ordinary Differential Equations (ODEs). This relationship is known for implicit methods,and recently, we have found it for some explicit methods. Explicit methods are computationally cheaper thanthe implicit ones, but they have to satisfy the stability requirement in order to obtain good results. This work isfocused on how to perform adaptivity while satisfying the stability requirement.
For time-domain goal-oriented adaptivity a full space-time variational formulation is needed.Even thoughthe problem can be solved employing space-time Finite Element Method (FEM), adaptivity can be performedusing the Method of Lines (MoL). This requires to find the equivalence between the space-time FEM and thenumerical methods for Ordinary Differential Equations (ODEs). This relationship is known for implicit methods,and recently, we have found it for some explicit methods. Explicit methods are computationally cheaper thanthe implicit ones, but they have to satisfy the stability requirement in order to obtain good results. This work isfocused on how to perform adaptivity while satisfying the stability requirement.
Description
Keywords
difusio ekuazio lineala, helburuetara orientatutako egokitzapena, metodo esplizituak denboran, erro-rearen adierazpena, elementu finituen metodoa, linear diffusion equation, goal-oriented adaptivity, explicit methods in time, error representation, finite element method