Argiaren lokalizazio azpinanometrikoa eta elektroien energia-galera metalezko nanopartikuletan: deskribapen klasikoa vs kuantikoa
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Nanopartikula metalikoen espektroskopia optikoa eta elektroien energia-galeraren espektroskopia (EELS)klasikoki aztertu ohi diren arren, eskala nanometrikoan eremu hurbilen deskribapen kuantitatiboa lor-tzeko partikularen geometriaren ezaugarri atomistikoen garrantzia erakutsi dute mekanika kuantikoadarabilten azken ikerketek. Deskribapen klasikoen mugak aztertu ditugu, sodiozko kluster eta dimeroenerantzun optikoa eta elektroien energia-galera kalkulatuz mugako elementuen metodoa (BEM) eta dipolodiskretuen hurbilketaren (DDA) bidez, eta emaitzak denboraren menpeko dentsitatearen funtzionalarenteoriarekin (TDDFT) alderatuz. Orokorrean, antzeko joerak behatzen dira emaitzetan, hutsartea 0.6nm baino txikiagoa duten dimeroetan izan ezik, elektroien uhin-izaerak garrantzia hartzen baitu.
The study of the optical spectroscopy and the electron energy loss spectroscopy (EELS) of metallicnanoparticles has traditionally relied on classical approaches. Nevertheless, recent quantum mechanicalstudies have shown the importance of the atomistic features of the particle geometry for a quantitativedescription of the near fields at the nanometer scale.We have studied the limits of the classicalapproaches, by using the boundary element method (BEM) and the discrete dipole approximation (DDA),to describe the optical response and electron energy loss probability of sodium clusters and dimers, andcomparing them with time dependent density functional theory (TDDFT). Similar trends are observedexcept for dimer gaps below 0.6 nm, where the wave nature of the electrons comes into play.
The study of the optical spectroscopy and the electron energy loss spectroscopy (EELS) of metallicnanoparticles has traditionally relied on classical approaches. Nevertheless, recent quantum mechanicalstudies have shown the importance of the atomistic features of the particle geometry for a quantitativedescription of the near fields at the nanometer scale.We have studied the limits of the classicalapproaches, by using the boundary element method (BEM) and the discrete dipole approximation (DDA),to describe the optical response and electron energy loss probability of sodium clusters and dimers, andcomparing them with time dependent density functional theory (TDDFT). Similar trends are observedexcept for dimer gaps below 0.6 nm, where the wave nature of the electrons comes into play.
Description
Keywords
Nanofotonika, nanoplasmonika, erantzun optikoa, EELS, eremu hurbilen lokalizazioa,metalezko nanopartikulak, Nanophotonics, nanoplasmonics, optical response, EELS, near-field localization, metallicnanoparticles